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Abstract— This paper is a first approach in finding design
principles for the design of shaking force balanced compliant
mechanisms. Shaking force balance means that the motions of
the mechanism do not create any resultant dynamic reaction
forces on the base, eliminating base vibrations.

It is found that for a single balanced rotatable flexible
link two stiffness related balance conditions exist in addition
to the balance condition known for a rigid link. With these
conditions the shaking force balance of a planar parallelogram
mechanism with flexible links is considered. The case with
fully compliant hinges is applied to a planar translator and
the results are compared with the case in which the hinges are
real revolute joints. Simulations show perfect force balance
for the model with revolute joints and a reduced shaking
force of 67 % for the model with flexible joints. Prototypes
of both mechanisms were developed and experimentally
tested, showing shaking force reductions of 93 % and 97.5 %,
respectively.

Index Terms— shaking force balance, compliant mechanism,
flexible links, vibration reduction

I. INTRODUCTION

Compliant mechanisms have various advantages over con-

ventional rigid-body mechanisms, such as part-count re-

duction, reduced assembly time, simplified manufacturing

processes, high repeatability, increased precision, lack of

friction and backlash, reduced wear and no need for lu-

brication, among others [1], [2]. These benefits make them

especially attractive for applications where precision and

accuracy are needed, such as in positional stages [3] or

motion transmissions.

Because of these advantages, the study and application

of compliant mechanisms has increased in recent years in

a variety of ways. Most of the research is focused on the

structural and kinematic analysis and design of compliant

mechanisms. However, the study of dynamic balancing of

compliant mechanisms still is very limited, if existing. In

the related field of rotor balancing a considerable amount of

work has been done [4], however the results are not directly

applicable to articulated compliant mechanisms. The force

balance of a four-bar mechanism with a flexible coupler was

studied in [5].

Dynamic balance consists of shaking force balance and

shaking moment balance. A dynamically balanced mecha-

nism does not exert any resultant reaction forces and resultant

reaction moments to its base, preventing base vibrations.
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Fig. 1. Dynamic reaction forces on the base pivot B0 of a rigid balanced
single link (left side) and a flexible balanced single beam (right side).

Dynamic balance of mechanisms consisting of rigid bodies

interconnected by ideal joints has been a subject in the

study of machine dynamics for many years [6], [7], [8]. For

shaking force balance the linear momentum of the moving

masses needs to be constant (e.g. zero) for all motions. A

zero linear momentum implies that the common center of

mass (common CoM) of the mechanism is stationary for

all motions. Similarly, for moment balancing the angular

momentum of the mechanism needs to be constant (e.g. zero)

for all motions [9].

The goal of this work is to investigate the shaking force

balancing of linkages composed of single flexible links to

find new balance principles for compliant mechanisms. The

force balance of a single flexible link is studied first. Subse-

quently it is investigated how, based on this balanced flexible

link, force balanced compliant parallelogram mechanisms

can be obtained. This is shown for both situations of having

flexible links with revolute pairs and having flexible links in a

monolithic design with flexible joints. Of both parallelogram

mechanisms a prototype was designed and tested in an

experimental set-up. The measurements are compared with

the calculated values from simulations.

II. THEORY AND DESIGN

In this section first the shaking force balance of a single

flexible link is considered, followed by the designs of two

parallelogram mechanisms each composed of two of these

force balanced flexible links.

A. Single shaking force balanced flexible beam

Shaking force balancing has been well defined for a rigid

body rotating link, however for a flexible beam it introduces

new problems which have not been considered yet. The

compliance of a beam means that when the beam is in
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motion, the body suffers from deformations which generally

result into a non-stationary CoM of the beam, as well as

oscillations that result in shaking forces. In Fig. 1 it is shown

on the left how a rigid shaking force balanced link B1B2

with point masses m1 and m2 in B1 and B2, respectively,

rotates about a base pivot B0 with its exerted reaction forces

Fx1, Fx2, Fy1, and Fy2 to the base pivot. The motion and

reaction forces of a similar flexible force balanced beam is

illustrated on the right side.

For force balance the sum of the reaction forces at the

base pivot must be zero, meaning that Fx1 = Fx2 and Fy1 =
Fy2. The CoM therefore must be exactly located in the base

pivot for all motions. For the rigid beam this means that the

necessary condition for force balance can be written as

m1l1 +
1

2
l21ρ1A1 = m2l2 +

1

2
l22ρ2A2 (1)

of which the parameters are explained in Table I. Generally

m2 is seen as the balancing mass of point mass m1. The

second terms on each side relate to the equally distributed

masses of the beams.

This balance condition also holds for the flexible beam,

however the CoM of the flexible beam could still oscillate

following the pattern defined by its stiffness/mass relation-

ship. To have Fx1 = Fx2 and Fy1 = Fy2, both sides of the

beam need to oscillate in a similar way. From the relation for

equal eigenfrequencies of both sides, two balance conditions

for this can be found, written as√
3E1I1
m1l31

=

√
3E2I2
m2l32

,
1

2
l21ρ1A1 =

1

2
l22ρ2A2 (2)

This means that the three shaking force balance conditions

for a single flexible beam result into

m1l1 = m2l2, l21ρ1A1 = l22ρ2A2,
E1I1
l21

=
E2I2
l22

(3)

These conditions balance all skew-symmetric modes even in

the non-linear regime, as long as the assumptions of beam

theory and neglecting the size of the point masses remain

valid. The symmetric modes are not force-balanced, so if

these are excited by perturbations or by the initial conditions,

the force balance is lost. It is interesting that these conditions

imply that the longer one side of the beam is, the stiffer it

needs to be.
TABLE I

DESIGN VALUES OF THE TWO COMPLIANT PARALLELOGRAM MODELS

Parameter Meaning Revolute joints Flexible joints
m1 tip mass 21.55 g 10.65 g
l1 beam length 20.4 mm 54 mm

ρ1A1 beam mass/lenght 0.064 g/mm 0.016 g/mm
E1I1 flexural rigidity 533.33 Nmm2 2133.33 Nmm2

m2 end mass 10.77 g 21.3 g
l2 beam length 40.8 mm 27 mm

ρ2A2 beam mass/lenght 0.016 g/mm 0.064 g/mm
E2I2 flexural rigidity 2133.33 Nmm2 533.33 Nmm2

B. Shaking force balanced compliant parallelogram linkages

The shaking force balanced flexible beam can be used to

design compliant parallelogram mechanisms. Figure 2 shows

Fig. 2. Force balanced compliant parallelogram mechanism with two
flexible beams and revolute joints.

Fig. 3. Force balanced compliant parallelogram with two flexible beams
and solely compliant joints. The base pivots consist of butterfly hinges.

a parallelogram mechanism with revolute joints. Here the

beams B1B2 and C1C2 are flexible while the translating bar

B1C1 is rigid. This bar has twice the mass of m1 which

is uniformly distributed such that effectively there is a mass

m1 in each joint B1 and C1. The force balance conditions

for each flexible beam (3) then determine the force balance

of the complete mechanism.

Figure 3 shows a proposed solution of a shaking force bal-

anced compliant parallel mechanism with solely compliant

joints. By considering compliant base pivots a new problem

is introduced: the necessity to find a flexible hinge suitable

for balance, which has not been investigated before. For the

purpose of this work an ideal flexible hinge for force balance

should feature the following characteristics:

• A low torsional stiffness is desired to transmit as perfect

as possible the beam deformations from one side to

the other side of the joint, since joint stiffness causes

undesired and unbalanced beam deformations.

• A stationary center of rotation is mandatory in order

to achieve a stationary common CoM. A non-stationary

center of rotation would result in motions of the com-

mon CoM, therefore leading to shaking forces.

• A symmetrical mass distribution is required. Some

flexible hinges such as the cross-hinge flexure feature

asymmetrical mass distributions which, when motion is

applied, result in shaking forces.

The butterfly-like hinge [10] was selected as a potential

best performing flexible hinge meeting these requirements

and was implemented as base pivots in B0 and C0.
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III. SIMULATIONS

In this section the models used for the simulations are

presented. Also the obtained simulation results are discussed.

A. Simulation Models

The numerical model of the flexible beam and its dynamics

were made with the flexible multibody dynamics program

SPACAR [11]. The beam model used is the classical Euler–

Bernoulli beam divided into 5 beam elements on each

side of the fixed pivot with neglected elongation and shear

deformation, and the mass distribution is assumed to be a

line mass, so no moments of inertia of the cross-section are

taken into account. First the model with revolute joints in

Fig. 2 was created. The values in Table I, third column, were

chosen which satisfy the force balance conditions (3). Then

the model with flexible joints in Fig. 3 was made for the

values in Table I, fourth column. The butterfly hinges as

base pivots were designed with the values in Table II, which

allow a proper tuning for low stiffness. The translating bar

B1C1 has rigid connections with the flexible beams.

TABLE II

BUTTERFLY HINGE VALUES FOR PROTOTYPE MODEL

Parameter Meaning Value
ρ3A3 Mass per unit of length 0.00064 g/mm
E3I3 Flexural rigidity 853.33 Nmm2

l3 Length of leaf spring 3 1.75 mm
l4 Length of leaf spring 4 9.3 mm
l5 Length of leaf spring 5 19.3 mm

B. Simulation Results

After creating the models, the simulations were executed.

Preloading the flexures is the method used to actuate the

mechanism. This avoids the complexity of adding an actuator

and it allows the visualization of the natural eigenfrequency.

Fig. 4 shows the obtained resultant shaking force for the

force balanced parallelogram with revolute joints. The re-

sults show negligible shaking forces in the frame, which

are a consequence of the integrator error of the numerical

calculations.

Figures 5 and 6 show the shaking forces obtained from

the simulations of the parallelogram mechanism with flexible

joints. Although the results show a reduction of, respectively,

67% along x and 76% along y of the force balanced case with

respect to the unbalanced case with masses m2 removed, the

shaking forces are not equal to zero.

IV. EXPERIMENTAL EVALUATION

In this section, the prototypes and the set-up used to test

them are explained. The results obtained are presented and

discussed.

A. Measurement Set-up

The two prototypes in Fig. 7 were built following the

designs used for the simulations. They have been made out of

laser cut acrylic plates for the rigid parts and the base frame,

and of spring steel for the flexures. In order to actuate them

Time (s)
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40
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Fig. 4. Resultant shaking force from simulations of the force balanced
mechanism with revolute joints in Fig. 2.
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Fig. 5. Shaking forces in the x-direction from simulations of the unbalanced
(dashed) and the force balanced (solid) mechanism with flexible joints in
Fig. 3, showing a reduction of 67%.

a Lorentz actuator was used, which applies a force to the

rigid translator and reacts against the base frame. To achieve

consistent results the same force amplitude was used in all

the tests. The moving part of the Lorentz actuator at the rigid

bar is compensated with an additional mass on the other side

to have the total mass of the bar exactly in the middle.

Since the mechanisms were designed to solely be shaking

force balanced, they still have shaking moments. To be able

to measure the shaking forces without the interference of the

shaking moment, a specific set-up was created as shown in

Fig. 8. The mechanism is placed with its white baseframe in

a compliant translating stage which can freely float along the

x-direction and constrains both the rotation and the motion

in the y-direction. This means that only shaking forces in

x-direction will cause translational motion of the stage.

A laser distance meter was used to measure the displace-

ments of the floating stage at the location of the mirror. This

measurement is considered proportional to the shaking force

for a given mechanism excited at a given frequency. Table III

shows the measurement devices used in this set-up.
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Fig. 6. Shaking forces in the y-direction from simulations of the unbalanced
(top) and the force balanced (bottom) mechanism with flexible joints in
Fig. 3, showing a reduction of 76%.

Fig. 7. CAD of prototype model with flexible joints (left) and of prototype
model with revolute joints (right) with lorentz actuator in top right corner.

B. Measurement Results

The measurements have been carried out for five different

frequencies (1, 1.5, 2, 2.5, 3 Hz). The mechanism was

stationary at the initial state, the actuation was increased

gradually until the desired amplitude was achieved. Each test

has been done with and without the balance masses m2 in

order to show the differences.

Fig. 9 shows the displacements measured when testing

the prototype with revolute joints without the masses m2 at

2 Hz. Comparing it with the data shown in Fig. 10 which

corresponds to the force balanced case with masses m2, we

can observe a reduction by 93 %.

Fig. 11 shows the displacements measured when testing

the prototype with compliant joints without the masses m2

at 2 Hz. When comparing it with the data shown in Fig. 12

which corresponds to the force balanced case with masses

x
y

actuator

mirror

m
2

translating stage
fixed stage

butterfly
hinge

rigid bar

Fig. 8. Compliant translating stage for testing the prototypes which can
float in a single direction along the x-axis. Shown with the prototype of the
mechanism with flexible joints of Fig. 3.

TABLE III

MEASUREMENT DEVICES FOR EXPERIMENTS

Device Model
Laser Sensor optoNDC ild1420-10

Data Acquisition Board National Instuments NI USB-6211

Time (s)
0 5 10 15 20

       Displacement (mm)

–10

–5

0

5

10

Fig. 9. Measured displacements of stage in x-direction at 2 Hz for the
unbalanced compliant parallelogram with revolute joints.

m2, we can observe a reduction by 97.5 %.

C. Discussion of Results

The results for the mechanism with revolute joints agree

quite well with the qualitative predictions of the model. On

the other hand, the measured reduction in shaking force for

the mechanism with flexible joints is significantly higher than

predicted by the model. This can be due to the different way

of excitation and due to modeling the balance masses m2

as point masses, whereas they have a non-negligible size in

the prototype model. Also the effect of self-balancing due to

oscillations of the two end-masses may play a role. With a

more accurate model of the experimental conditions, a better

agreement is expected. This is a subject of future research.
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Fig. 10. Measured displacements of stage in x-direction at 2 Hz for
the shaking force balanced compliant parallelogram with revolute joints,
showing a reduction of 93% as compared to the unbalanced case.
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Fig. 11. Measured displacements of stage in x-direction at 2 Hz for the
unbalanced compliant parallelogram with flexible joints.

V. CONCLUSIONS

In this paper the shaking force balancing of a flexible beam

rotating about a single base pivot was investigated. It was

found that in addition to the known force balance condition

for a rigid beam rotating about a single base pivot, a second

and a third force balance condition exist which relate the

stiffness of the beam segments on each side of the base pivot.

These conditions imply that the longer one side of the beam

is, the stiffer it needs to be. Considering this as a design

principle, the balanced flexible beam was used to design two

compliant parallelogram mechanisms, consisting of a design

with revolute joints and a design with solely flexible joints,

which were presented.

The two parallelogram mechanisms were simulated with

dynamic models and prototypes were developed. The sim-

ulations showed perfect force balance for the model with

revolute joints and a reduced shaking force of 67% for the

model with flexible joints. The prototypes were tested in an

experimental set-up, showing a reduction of shaking force

of 97.5 % for the parallelogram with flexible joints and a

reduction of 93 % for the parallelogram with revolute joints,

as compared to their unbalanced cases.
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Fig. 12. Measured displacements of stage in x-direction at 2 Hz for the
shaking force balanced compliant parallelogram with flexible joints, showing
a reduction of 97.5% as compared to the unbalanced case.
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