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Abstract—Most currently existing mechanical metamaterial 
designs are based on Bravais lattices. These consist of 
parallelogram or parallelepiped unit cells, which are 
respectively translated along two or three independent vectors 
to fill the complete space. This approach is inherently unable to 
match curved surfaces like spheres, since these cannot be 
constructed only from parallel and perpendicular lines. In this 
paper, we introduce a generalized unit cell, based on the 
symmetry groups of the sphere. We use this approach to develop 
a spherical transformable origami-inspired metamaterial. We 
describe the motions of this new metamaterial, as well as 
experimental observations on a physical, 3D printed model.
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I. INTRODUCTION

Mechanical metamaterials are an emerging class of 
materials where an internal structure, rather than the chemical 
structure of the material they are made of, dominates the bulk 
material properties [1], [2]. Generally, when designing these 
mechanical structures, a unit cell (UC) is designed, of which 
many copies are repeatedly placed along two or three lattice 
vectors, for planar and spatial metamaterials respectively, to 
fill all of space according to a Bravais lattice [3]. This 
approach greatly simplifies the design process, since it is 
assumed that the internal deformations of the material 
structure follow the same periodicity. In general, the 
mechanical behavior of the metamaterial is fully determined 
by the behavior of the single unit cell. Therefore, the 
mechanical behavior that is designed in a single unit cell 
determines the mechanical properties of the bulk.

While this approach lends itself well to create infinite 
areas or volumes, not all finite shapes can be created in this 
way. Specifically, when we consider curved surfaces, we are 
able to approximate their shape by a stacking of 
parallelepipeds, but will, in general, never be able to exactly 
match all curvatures. To illustrate this, consider building a 
sphere of LEGO bricks. With increasing numbers of available 
bricks, the sphere can be better approximated, but an exact 
matching will never be achieved, as illustrated in Fig. 1.
In this paper, we present a generalized way of constructing a 
unit cell, based on the symmetry groups of the desired shape, 
which is a sphere in our case. Using this method, the unit cell 
is not copied and translated along generators of a Bravais 
lattice, but the copies of the unit cell are rotated and mirrored 

according the chosen symmetry groups of the sphere. Because 
of this it will be shown that the whole sphere can be exactly 
matched by the designed mechanical structure.

Figure 1. When creating a sphere out of LEGO bricks (or other 
parallelepipeds), only an approximation of the sphere can be achieved.

Adapted from [4].

We employ this method to design a transformable origami 
inspired sphere, consisting of 60 generalized unit cells. These 
unit cells have a single degree of freedom, allowing the sphere 
to change in size, enabling a reduction of the inscribed volume 
of 76.3%.

We present a kinematic analysis of this mechanical 
structure as well as experimental validation of a 3D-printed 
prototype. We discuss the performance of the design as well 
as the number of degrees of freedom when periodicity is 
relaxed to the whole sphere.

II. SPHERICAL SYMMETRY GROUPS

For spheres, there are exactly 14 possible symmetry 
groups [5], [6]. These groups can be further split into two 
categories: platonic and parametric symmetries. Seven 
platonic symmetry groups exist, corresponding to the Platonic 
solids. There are seven parametric groups, for which the 
number of fundamental domains that are needed to span the 
whole sphere depends on a parameter.

In this study, we chose to focus on the Platonic groups, 
since for these groups the fundamental domains are more 
evenly distributed over the sphere due to their correspondence 
to regular polyhedra. For the parametric groups, there are two 
sets of fundamental domains, one on the “northside” of the 
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sphere, and one on the “south-side”, leading to a less evenly 
distributed set of domains. Since, as we describe in the next 
section, a polyhedral approximation of the sphere will be used 
in our design, the even distribution of the fundamental 
domains leads to a better correspondence between the 
mechanism and the original sphere.

Within the Platonic groups, the *532 symmetry group 
(using the notation from [5]) was chosen, as it leads to the 
largest number of fundamental domains on the sphere. This 
group corresponds to the dodecahedron and its dual, the 
icosahedron. The fundamental domains of this symmetry 
group correspond to the faces of a dysdiakis triacontahedron, 
shown in Fig. 2. This polygon has 120 faces and is the largest 
Catalan solid.

III. UNIT CELL DESIGN

We design the origami-inspired spherical mechanism 
based on a unit cell consisting of rigid faces and folds. In 
general, the folding of curved surfaces is not possible without 
tearing or buckling. Therefore, to create a folding mechanism, 
we need to approximate the sphere with a polyhedron. The 
choice for *532 symmetry in the previous section leads to the 
dysdiakis triacontahedron.

Figure 2. The fundamental domains of the spherical *532 symmetry group 
correspond to the faces of a dysdiakis triacontahedron. 

Source: [7]

Figure 3. The origami-inspired structure consists of rigid triangular faces, 
which are connected by folds into pentagonal units (shown with red, blue 

and green outlines). These units are subsequently coupled by spherical 
joints, allowing for open spaces (shown in yellow) when the structure is 

deformed.

For our origami-inspired mechanism, we take all these 
faces to be rigid and design the connections between the faces 
such that a dilational motion is obtained. For this, we consider 
a Unit Cell consisting of two faces, connected by a fold. Five 
of these unit cells can be coupled, again with folds, to form a 
pentagonal unit. The connections between the pentagonal 
units are realized by spherical joints at the corners of the base 
pentagon. This structure, for three of such pentagonal units, is 
shown in Fig. 3.

When the unit cells are repeated all over the sphere in this 
way, twelve of these pentagonal units can be used to span the 
sphere, preserving the single degree of freedom of the unit cell. 
At the construction position, without open spaces between the 
pentagonal units, it is a dysdiakis triacontahedron, and when 
actuated, the sides of the pentagonal units move inwards, 
shrinking the side-lengths of the regular pentagon they 
describe. This creates open spaces between these pentagonal 
units, leaving only point contacts between them. In the 
physical model, these connections are realized by adding two 
plates to the unit cell, which are folded into the polyhedron in 
the construction position. In this way, the whole mechanism 
consists of rigid plates, connected only by fold lines.

IV. FABRICATION METHODS

Of the model shown in Fig. 3 a prototype was designed 
and 3D printed in parts from PLA, using a Prusa i3mk2 3D 
printer. The 12 printed parts were aligned using notched 
connectors at their sides and cyanoacrylate glue was used to 
fix these connections. The design of one such part is shown in 
Fig. 4.

Figure 4. A top view of the pentagonal unit design. These structures were 
3D printed in the shown flat state. Netting was used to create fold lines 

between the grey rigid plates and twelve of these units were assembled into 
a Dysdiakis Triacontahedron by matching and gluing the notched parts.

The parts were 3D printed in a flat state. Each part 
consisted of a single pentagonal pyramid, opened up at one of 
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the fold lines to fold it flat. The total thickness of the plates is 
3mm. For the fold lines, two layers of netting were included 
within the 3D print, one at a height of 0.5mm and one at a 
height of 2.75mm. These layers were included during printing 
and the following layers of PLA flows between the netting, 
securing it within the rigid plats. After 3D printing, the top-
and bottom layers of netting were cut selectively to assign 
mountain- and valley folds to the mechanism. This resulted in 
an origami mechanism consisting of rigid plates, connected by 
fold lines with very little stiffness.

V. RESULTS

A. Degrees of Freedom
The generalized unit cell we designed has a single degree

of freedom. However, when the whole sphere is considered, 
instead of just the periodic motions based on a single unit cell, 
there are 33 degrees of freedom. This number was calculated 
using counting-arguments, and verified by modeling the 
whole structure as a pin-jointed framework and calculating the 
nullspace of the Jacobian [8].

In the physical model, these extra degrees of freedom 
made it difficult to uniquely control the mechanical structure. 
A balloon was inserted into the enclosed volume such that by 
inflating the balloon, the prototype expands symmetrically, as 
if it has a single degree of freedom. To investigate the practical 
volume decrease, the balloon was deflated and the structure 
was collapsed manually.

Figure 5. The expanded (left) and contracted (right) state of the origami 
inspired mechanism.

Figure 6. The volume change of the mechanism is determined based on the 
inscribed dodecahedron, defined by the connection points of the pentagonal 

units. This dodecahedron is shown here in red.

B. Volume Change
When the mechanism is contracted, the pentagonal units

deform such that their base pentagon remains regular and the 
side-lengths decrease. Simultaneously, the pentagonal units 
become more pointed, creating a shape similar to a stellated 
dodecahedron. This state is shown, next to the fully expanded 
state, in Fig. 5.

To determine the volume decrease of the kinematic model 
under actuation, the inscribed dodecahedron, defined by the 
connection points of the pentagonal units was used. This is 
illustrated in Fig. 6. This volume was calculated in the 
kinematic model to undergo a decrease of 76.3%.

Images of the physical model in both the expanded and 
contracted state are shown in Fig. 7. In this case, the volume 
decrease achieved was less than the calculated value. This is 
clearly shown in Fig. 8, where the two states are superimposed 
in one figure. The enveloping sphere of the model hardly 
changes in size.

Figure 7. The physical model in the expanded state (left) and in the 
contracted state (right).

Figure 8. Comparison of the expanded and contracted state of the physical 
model. The contracted state is shown, with the contours of both the 

contracted and the expanded state drawn in red.

VI. DISCUSSION

While the volume decrease of the kinematic model is not 
matched by the physical model, the deformed shapes match. 
The differences between the two are likely caused by the 
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thickness of the plates in the physical model. This was 
assumed to be zero in the kinematic model, while they 
physically limit the motion of the prototype. Also, because the 
physical model had 33 degrees of freedom and was actuated 
by hand, it is likely that the extremal states of the mechanism 
were not reached. For example, the expanded state shown in 
Fig. 7 shows small indentations on the edges of the pentagonal 
units, indicating that the fully expanded state was not reached.

A balloon was used to expand the structure, but the 
contraction was done manually in this study. As an 
improvement, the balloon could be attached to the inside of 
the mechanism, also allowing control of the mechanism 
contraction through deflation of the balloon. Alternatively, a 
different assignment of fold lines might help to reduce the 
degrees of freedom.

Finally, the mechanism presented in this paper deforms 
from a dysdiakis triacontahedron into a stellated 
dodecahedron. If the largest diameter of the structure is 
considered, the resulting scaling is minimal. An alternative 
design could have the pentagonal units pointed into the 
enclosed volume, creating an approximate dodecahedron with 
dimples in the faces, as illustrated in Fig. 9. This design would 
have a greater volume change of the circumscribed 
dodecahedron, but the internal collisions would not allow the 
neighboring faces to fold completely flat.

Figure 9. An alternative design, where the pentagonal units are inverted to 
point into the enclosed volume, for improved scaling of the circumscribed 

volume. Shown are both the expanded (left) and the contracted state (right).

VII. CONCLUSIONS

In this paper, we have presented an origami-inspired 
transformable mechanism whose construction was based on 

the spherical *532 symmetry group. The sphere is designed to 
perform a dilational motion, which results in a decrease of the 
inscribed dodecahedron volume of 76.3%.

In order to construct this spherical structure, we developed 
a generalization of the periodic lattices regularly used for the 
design of mechanical metamaterials. The generalized unit cell 
consists of a fundamental domain of the chosen spherical 
symmetry group, and instead of building the lattice by discrete 
translation, the corresponding symmetry operations are used. 
The resulting design was constructed using additive 
manufacturing, with netting used to obtain low stiffness fold 
lines between the rigid plates.
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