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Abstract. This article presents a graphical analysis method for the
verification of the gravity force balance and shaking force and shak-
ing moment balance of a 1-DoF pantographic linkage. First the joint
velocities of the linkage are graphically found of which the procedure is
well known. To obtain the linear and angular momentum graphically,
the mass and inertia of each element are modeled with two equivalent
masses about the center of mass of the element, resulting in a mass and
inertia equivalent model with solely point masses. The velocities of these
point masses are obtained and each velocity vector is multiplied with the
respective mass value to obtain vectors that represent the linear momen-
tum. For force balance it is shown that the sum of all linear momentum
vectors form a polygon. Subsequently the linear momentum vectors with
their moment arms are transferred into an angular momentum diagram
which for moment balance shows to sum up to zero.

Keywords: Graphic analysis · Linear and angular momentum ·
Gravity force balance · Shaking force and shaking moment balance ·
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1 Introduction

When mechanisms are shaking force and shaking moment balanced, they do
not exert any dynamic reaction forces and moments to their base during (high-
speed) motions [3,5]. This reduces base vibrations significantly and when placed
on floating platforms such as drones and cable robot end-effectors, balanced
mechanisms do not disturb the position, orientation, and motion of the floating
platform [2,7]. For shaking force balance the linear momentum of all moving
elements together must be constant (zero) while for shaking moment balance the
angular momentum of all moving elements together must be constant (zero). A
shaking force balanced mechanism is also gravity force balanced and therefore
all methods for shaking force balancing are also applicable for gravity force
balancing.
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Fig. 1. 1-DoF dynamically balanced pantographic linkage in two poses with fixed joint
A0 and a slider in B2 with slider trajectory ts in red. The common CoM of all elements
is stationary in A0.

While there are various methods for force balancing of a linkage, using coun-
termasses [1] or inherently balanced linkage architectures [6], for moment bal-
ancing of a linkage the methods are extremely limited [4]. Obtaining moment
balance without additional elements is in most cases not possible [9].

In order to obtain a better understanding of moment balancing, the goal
of this paper is to present a graphical method for the analysis of the linear
and angular momentum of a linkage and to apply it to a 1-DoF dynamically
balanced pantographic linkage to graphically show that the sums of linear and
angular momenta are indeed zero. This will also give insight in the contribution
of each linkage element to the total linear and angular momentum, i.e. in their
contributions to the dynamic balance.

First the linkage is presented and the joint velocities are found graphically.
Then the mass and inertia of each element are modeled with two equivalent
masses to obtain a mass and inertia equivalent model with solely point masses.
Subsequently the velocities and the linear momenta of the point masses are
obtained graphically and are evaluated for force balance. As a final step, an
angular momentum diagram is presented for evaluation of the moment balance.

2 Graphic Analysis of the Linear and Angular
Momentum

Figure 1 shows a pantographic linkage consisting of the 4 links B1A1, B3A2,
B3B2, and B1B2, which are connected with revolute pairs in A1, B1, B2, and
B3, forming a parallelogram. In A0 of link B1A1 the linkage has a revolute pair
with the base, i.e. A0 is the fixed joint. In joint B2 there is a slider with fixed
slider trajectory ts which constrains the linkage to one degree-of-freedom (1-
DoF) motion, indicated by angle θ1 of the absolute rotation of link B1A1. When
in motion, the endpoint A2 traces the trajectory te. The linkage is shown for two
poses, the extended pose at the beginning of the slider trajectory with a relative
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Table 1. Parameter values for dynamic balance of the pantographic linkage in Fig. 1.

[mm] [mm] [g] [gmm2]

l1 = 100 s1 = 24.36 m1 = 118.56 I1 = 312454

l2 = 250 s2 = 100.57 m2 = 302.95 I2 = 2482640

l3 = 50 s3 = 97.05 m3 = 150.19 I3 = 503989

l4 = 50 s4 = 25.48 m4 = 24.22 I4 = 7275

m5 = 67.16 I5 = 4581

m6 = 782.63 I6 = n/a
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Fig. 2. Graphic analysis of the joint velocities with the velocity in B2 known.

angle between links B1A1 and B3A2 of 35.4◦ and, in green, the retracted pose
at the end of the slider trajectory.

The links have lengths li as illustrated in Fig. 1 and each of the 4 links has a
mass mi and an inertia Ii about the link center-of-mass (CoM) Si, which is at a
distance si from a joint as depicted. In addition, in A2 there is the CoM S5 of the
end-effector with mass m5 and inertia I5, rigidly mounted on link B3A2, and in
B2 there is the CoM S6 with mass m6, which is the mass of the slider parts and
a countermass together. The inertia of these last parts is not considered since
they are solely in translational motion (the slider consists of a pin-in-slot of
which the pin is fixed with and included in link B3B2 and the piston component
that actuates the pin-in-slot motion is moving rectilinearly; the countermass is a
circular disc on the slider pin with negligible friction in between for which it does
not rotate). With the values in Table 1 the linkage is completely force balanced
and moment balanced, which was verified by a dynamic simulation showing that
during motion the common CoM of all elements remains stationary in A0 and
that the sum of the angular momenta of all elements remains zero.
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Fig. 3. Velocity analysis of the point masses of a dynamically equivalent model where
the mass and inertia of each element are modeled with two equivalent masses.

The first step is the graphic analysis of the joint velocities, which is shown in
Fig. 2 following the commonly known approach [8]. The velocity in B2 is known
as starting point and has a direction tangent to the slider trajectory ts. By
rotating it 90◦, the intersection (2) with the line through A1B1 is found and
subsequently intersection (3) and the velocity of B1 (4) are derived. With the
line through A0 then the velocity of A1 is obtained (5) which, after 90◦ rotation
(6), determines line (7) which is parallel to line A1A2. The intersection of line (7)
with line (8), which is parallel to line B2B3, determines the velocity of B3 (9).
Finally intersection (10) is obtained with which line (11) to A2 is determined
and the velocity in A2 is found (12). As expected, the velocity vector in A2 is
indeed tangent to the traced end-effector trajectory te.

To be able to graphically analyze the angular momentum of the linkage, the
mass and inertia of each element are modeled with two equivalent masses. This
is the simplest possibility for dynamic equivalent modeling of planar motions for
which also more than two equivalent masses can be used [10]. Figure 3 shows
the dynamically equivalent model where each mass mi, except m6 for which
no inertia is involved, has been divided in two equal equivalent masses m∗

i =
mi/2 both located at a distance d∗

i from the element CoM Si, one on each side
along the line through the link joints such that Si is their common CoM. The
distances d∗

i are determined by the inertia of the element and are derived from
Ii = 2(m∗

i d
∗2
i ) as d∗

i =
√

Ii/mi with which the model is both mass and inertia
equivalent with solely point masses. It is also possible to divide mi in two different
equivalent masses with two different lengths d∗

i or to place the equivalent masses
off the line through the link joints which, however, would make the analysis more
complicated than needed.
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Fig. 4. Linear momentum vectors obtained by multiplying the velocity vectors with
the respective mass values. The sum of the linear momentum vectors forms a polygon
for force balance.

The velocity analysis of the 11 point masses is also shown in Fig. 3. Continuing
with the graphical solution of the joint velocities in Fig. 2, with the instantaneous
link centers of rotation the velocities of all point masses are readily obtained.
This might contrast with the readability of the illustration of Fig. 3, for which
the author apologizes.

The linear momentum of each point mass is obtained when each velocity
vector in Fig. 3 is multiplied by its mass value. The resulting linear momentum
vectors are shown in Fig. 4 which were obtained by multiplying the length of each
velocity vector by its respective value mi/100 with the mass values in Table 1,
scaling the vectors to fit within the drawing.

The force balance can now be verified by adding all the linear momentum
vectors together, which must form a polygon (i.e. a closed chain) since this
means that the sum of the linear momenta of the linkage equals zero. The linear
momentum polygon is also shown in Fig. 4.

The angular momentum of the linkage consists of the sum of the moments of
the linear momentum vectors about the common CoM in A0. The moments of the
linear momentum vectors are illustrated in Fig. 5 where each linear momentum
vector has been shifted along its line of action to the endpoint of its moment
arm. The angular momentum diagram in Fig. 6 is obtained from Fig. 5 when
all the linear momentum vectors are rotated such that their moment arms are
aligned with the same line u. Then all the linear momentum vectors are oriented
vertically, either upwards or downwards.
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Fig. 5. Representation of the angular momenta of the linkage with the linear momen-
tum vectors and their respective moment arms about the common CoM in A0.

The angular momentum of each linear momentum vector can be found by
the graphical multiplication of lines for which the shown triangle of reference is
used with a height of L6 and a reference width equal to the moment arm of La

5 .
This results for each linear momentum vector into a diagonal line, which starts
at 0 at the location of the vector (i.e. at the end of the moment arm) and crosses
the vertical line H through A0 - the angular momentum axis - at the value of
its angular momentum.

For example, when La
2 is placed in the reference triangle at the location of

L6, which is shown in green, then the diagonal line of La
2 is found as the line from

the endpoint of La
2 to the endpoint of the triangle. Subsequently this diagonal

line is placed in the diagram at La
2 on line u and crosses the H-axis in point h,

which is the value of the angular momentum of La
2 .

To sum the resulting angular momentum values, the diagonal lines have been
vertically shifted such that each diagonal line starts at the height of the endpoint
of the previous diagonal line. Of the upward directed linear momentum vectors
the summed angular momentum is shown below A0 and of the downward directed
linear momentum vectors the summed angular momentum is shown above A0.
For the total sum of the angular momenta to be zero, the part above A0 must
be equal to the part below A0, which is verified by the circular arc about A0.
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Fig. 6. Angular momentum diagram obtained by rotating all the linear momentum
vectors such that their moment arms are aligned with the same line u. The angular
momentum of each vector is found by the multiplication of lines with the help of a
triangle of reference, gaining diagonal lines that intersect with the vertical angular
momentum axis H through A0 at the angular momentum values. The values of all
intersections sum up to zero for moment balance.

3 Conclusions

In this paper it was shown how the linear momentum and the angular momentum
of a linkage can be found graphically. As an example this was applied to verify the
shaking force balance and the shaking moment balance of a 1-DoF pantographic
linkage. The mass and inertia of each linkage element were modeled with two
equivalent masses to obtain a dynamically equivalent model with solely point
masses. The velocities of the point masses were derived graphically and the linear
momenta of the point masses were found by multiplying the velocity vectors
with their respective mass values. For force balance it was shown that the sum
of the linear momentum vectors form a linear momentum polygon. The angular
momentum was presented in an angular momentum diagram and showed to sum
up to zero for moment balance. The presented graphical method may be of help
to better understand the characteristics of force balance and, in specific, the
characteristics of moment balance for the development of a synthesis method for
moment balanced mechanisms. Extending the method to linkages with multiple
degrees of freedom and to spatial linkages is an interesting next step.
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