
Mass equivalence of four-bar linkages for the
design of reconfigurable force-balanced

mechanisms

Volkert van der Wijk

Faculty of Mechanical, Maritime, and Materials Engineering, Department of Precision
and Microsystems Engineering, Mechatronic System Design, Delft University of

Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
v.vanderwijk@tudelft.nl

Abstract. In this paper the mass equivalence of four-bar linkages is in-
vestigated, which is the characteristic that the mass of the complete link-
age can be modeled dynamically equivalent with one or more equivalent
masses in one or more points in the linkage. For a general spatial or planar
four-bar linkage this results in a model with two equivalent masses, one
in a point in each of two opposite links. Since a four-bar consists of two
sets of opposite links, its mass can be modeled with two different mass
equivalent models and therefore there exists a mass equivalent point in
each of the four links. It is shown how these four mass equivalent points
can be used for designing a balanced linkage with a floating four-bar link-
age that can be reconfigured into four different compositions, depending
on which equivalent points are applied as joints to connecting links. It
is also shown that when the four-bar linkage becomes a parallelogram,
the four mass equivalent points become mass equivalent lines, allowing
smooth reconfiguration to numerous positions along the links.

Keywords: mass equivalent model, four-bar linkage, force balance, par-
allelogram, reconfigurable

1 Introduction

Modeling the mass of mechanism elements with equivalent masses has shown to
be a fruitful approach in statics and dynamics for long time. In robotics it is
commonly used for deriving the balance conditions of closed loop mechanisms,
modeling the mass of the moving platform or of one link in each closed loop
in order to obtain open-loop chains [11, 2] or for finding optimally balanced
solutions [3].

Mass equivalent modeling has also shown fruitful in the synthesis of (com-
plex) balanced linkages where a single mass model can represent a variety of
multi-degree-of-freedom (multi-DoF) mass equivalent linkages, which then can
be exchanged with one another without affecting the force balance. Examples
have been shown of mass equivalent dyads [5], mass equivalent triads [6], and
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mass equivalent pantographs [10], which are also applied for constructing bal-
anced focal linkages [8] and for balancing the Peaucellier-Lipkin straight-line
linkage [9]. This synthesis approach also allows a relatively simple way to derive
the force balance conditions of complex linkages [7].

This paper is focussed on the mass equivalence of a general (spatial or planar)
four-bar linkage of which the mass can be modeled with a single mass model.
Without paying notice to it, Dobrovolskii [4] already made use of the mass
equivalent points of the planar 4R four-bar linkage by applying a pantograph
to these points to trace the center of mass of the linkage. In this paper the
mass equivalence of the four-bar linkage is investigated in dept. First the mass
equivalent points of the general four-bar linkage are obtained and subsequently
they are applied for the design of a reconfigurable mechanism with a floating
four-bar linkage that can be reconfigured in four different compositions without
affecting the force balance. The last part presents the specific situation that
the general four-bar linkage has become a planar parallelogram in which mass
equivalent lines allow smooth reconfiguration to a wide variety of poses.

2 Mass Equivalent Points for Force Balance

In Fig. 1 a force-balanced linkage of 7 elements is presented. It consists of a
floating four-bar linkage B0B1B2B3 and links A0A1 and A2A3 of which A0 and
A3 are pivots with the base link A0A3 and A1 and A3 are connected with a
joint in points R1 and R3, respectively. R1 and R3 are points in links B0B1 and
B2B3, respectively, located at a distance r1 and r3, respectively, from the joint
as illustrated and are mass equivalent points of the four-bar, as will become clear
later. This linkage can also be observed as a four-bar linkage A0A1A2A3 of which

B
1

B
0

m
1

A =R
1 1

m
01

A
0 A

3

m
02

e
01

e
02

�
�

�
�

B
2

B
3

m
2

m
3

m
4

com

A =R
2 3

R
2

R
4

com
fb

e
1

e
2r

1

r
2

e
3

r
3

e
4

r
4

S

Fig. 1. Force-balanced reconfigurable linkage with common CoM in S for any pose,
based on a floating four-bar B0B1B2B3 that is connected to the base with two links.
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the coupler link has been replaced with the floating four-bar linkage B0B1B2B3.
All the joints can be considered spherical joints, allowing spatial motions in all
directions, but they can also be considered as universal or revolute joints in any
desired combination. When all the joints would be revolute pairs with their axes
of rotation parallel, then Fig. 1 would show a 2-DoF planar linkage with the
DoFs θ1 and θ2 as illustrated.

Each link i of the floating four-bar has a length li and a mass mi of which
the link center-of-mass (CoM) is located at a distance ei from the link joint as
illustrated. Links A0A1 and A2A3 have a length l01 and l02, respectively, and a
mass m01 and m02, respectively, located at a distance e01 and e02, respectively,
from the base joints as illustrated. These link masses act also as countermasses
in order to balance the complete linkage such that the common CoM of all the
links is in a fixed point S in the base for any pose or motion of the linkage.

To calculate the conditions for which the common CoM of all the links is in S,
the floating four-bar linkage can be modeled mass equivalently as shown in Fig. 2.
The mass of link B1B2 is modeled with an equivalent mass ma

2 = m2(1− e2
l2
) in

B1 and mb
2 = m2

e2
l2

in B2 while the mass of link B3B0 is modeled similarly with

equivalent masses ma
4 = m4(1 − e4

l4
) in B3 and mb

4 = m4
e4
l4

in B0. With these
equivalent masses the links B1B2 and B3B0 can be eliminated, resulting in two
independend parts of the linkage.

The common CoM of m1, m
a
2 , and mb

4 in link B0B1 is defined as point R1

while the common CoM of m3, m
b
2, and ma

4 in link B2B3 is defined as point R3

of which their locations are calculated as:

r1 =
m1e1 +ma

2l1
m1 +ma

2 +mb
4

, r3 =
m3e3 +ma

4l3
m3 +ma

4 +mb
2

(1)
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Fig. 2. Equivalent mass model of the floating four-bar linkage with equivalent masses
mR1 and mR3 in mass equivalent points R1 and R3, respectively.
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R1 and R3 are mass equivalent points of the floating four-bar, which means that
the motion of the floating four-bar mass mfb = m1 + m2 + m3 + m4 can be
modeled mass equivalently with an equivalent mass mR1 = m1 + ma

2 + mb
4 in

point R1 and an equivalent mass mR3 = m3 +ma
4 +mb

2 in point R3. With these
equivalent masses, the two separate parts of the model in Fig. 2 must be balanced
individually. Therefore A1 must be located in R1 and A2 must be located in R3

to have the floating four-bar balanced about A1 and A2. Subsequently the CoMs
of links A0A1 and A2A3 need to fulfill the balance conditions:

e01 =
(m1 +ma

2 +mb
4)l01

m01
, e02 =

(m3 +ma
4 +mb

2)l02
m02

(2)

with which the common CoM of the left part of the linkage model in Fig. 2 is
in A0 and the common CoM of the right part of the linkage model is in A3 for
any pose and motion. Since A0 and A3 are base pivots, the common CoM of the
complete linkage is in a stationary point in the base as well, which is in point S.

For the balance conditions (1) and (2) the linkage in Fig. 1 is force balanced
for any possible variation. Figure 3 shows, for instance, a variation in which the
floating four-bar linkage is inverted and the base joints A0 and A3 are in a single
point. This linkage is force balanced with the common CoM in this single base
point for any pose.

It is possible to follow the same procedure to find the mass equivalent points
R2 and R4 of the floating four-bar, which are located in links B1B2 and B3B0,
respectively, at distances r2 and r4 from the link joint, respectively, as illustrated
in Fig. 1. In this case the mass of link B0B1 is modeled with equivalent masses
ma

1 = m1(1 − e1
l1
) and mb

1 = m1
e1
l1

located in B0 and B1, respectively, and the
mass of link B2B3 is modeled with equivalent masses ma

3 = m3(1 − e3
l3
) and

mb
3 = m3

e3
l3

located in B2 and B3, respectively. The location of points R2 and
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Fig. 3. Force-balanced linkage with inverted floating four-bar and the base pivots in a
single point, a variation of the design in Fig. 1.

61 of 833



Mass equivalence of four-bar linkages for reconfiguration 5

R4 in their link then is found with:

r2 =
m2e2 +ma

3l2
m2 +ma

3 +mb
1

, r4 =
m4e4 +ma

1l4
m4 +ma

1 +mb
3

(3)

It is interesting to note that the line through R1 and R3 and the line through R2

and R4 intersect at the common CoM of the floating four-bar for any pose. It is
also interesting that for force balance the floating four-bar could be mounted on
links A0A1 and A2A3 in four different ways, for instance as well by placing joint
A1 in R4 and joint A2 in R2 as illustrated in Fig. 4c. This results in a model
with an equivalent mass mR4 = m4 +ma

1 +mb
3 located in A1 and an equivalent

mass mR2 = m2 +ma
3 +mb

1 located in A2. For force balance the CoMs of links
A0A1 and A2A3 then need to fulfill the balance conditions:

e01 =
(m4 +ma

1 +mb
3)l01

m01
, e02 =

(m2 +ma
3 +mb

1)l02
m02

(4)

3 Reconfiguration to Four Force-balanced Compositions

With the four mass equivalent points, it is possible to mount the floating four-bar
in four different ways on the supporting links A0A1 and A2A3, as illustrated in
Fig. 4. However, since the equivalent masses of the floating four-bar mR1 , mR2 ,
mR3 , and mR4 are not equal in general, this has influence on the design of the
supporting links which then also have different balance conditions for each of the
four configurations, which already becomes clear by comparing Eqs. (2) and (4)
of the configurations in Fig. 4a and 4c. In this section three different cases are
presented for the floating four-bar to be reconfigured from one composition to
another without affecting the balanced design by dismounting and reassembling
it onto A1 and A2.

3.1 Case 1, one reconfiguration possibility of R1 to R4 and R3 to R2

To reconfigure the linkage from Fig. 4a to Fig. 4c such that force balance is
maintained implies that the balance conditions for the supporting links, Eqs. (2)
and (4), must be equal. Since this reconfiguration consists of mounting joints A1

and A2 in either R1 and R3 or R4 and R2, respectively, the additional balance
condition for which force balance is maintained follows also from the equivalent
four-bar masses that need to be equal with mR1 = mR4 and mR3 = mR2 , which
can be written as:

m1 +ma
2 +mb

4 = m4 +ma
1 +mb

3 (5)

m3 +ma
4 +mb

2 = m2 +ma
3 +mb

1

and which results in the single force balance condition:

mb
1 +ma

2 −mb
3 −ma

4 = 0 (6)

or after substitution:

m1
e1
l1

+m2(1− e2
l2
)−m3

e3
l3
−m4(1− e4

l4
) = 0 (7)
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3.2 Case 2, one reconfiguration possibility of R1 to R2 and R3 to R4

Similarly as for case 1, it is possible to reconfigure the linkage from Fig. 4a to
Fig. 4d such that force balance is maintained without modifying the supporting
links. This reconfiguration consists of mounting joints A1 and A2 in either R1

and R3 or R2 and R4, respectively. The additional balance condition for which
force balance is maintained follows from the equivalent four-bar masses that need
to be equal with mR1 = mR2 and mR3 = mR4 , which can be written as:

m1 +ma
2 +mb

4 = m2 +ma
3 +mb

1 (8)

m3 +ma
4 +mb

2 = m4 +ma
1 +mb

3
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Fig. 4. Four different ways of mounting the floating four-bar on the supporting links
A0A1 and A2A3 for balance. Reconfiguration of the linkage from one composition to
another is possible without affecting the force balance.
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and which results in the single force balance condition:

ma
1 −mb

2 −ma
3 +mb

4 = 0 (9)

or after substitution:

m1(1− e1
l1
)−m2

e2
l2
−m3(1− e3

l3
) +m4

e4
l4

= 0 (10)

3.3 Case 3, independent reconfiguration to any Ri

To reconfigure the floating four-bar linkage from any composition to any other
composition in Fig. 4 while maintaining force balance it is required that all
equivalent masses of the floating four-bar are equal, i.e. mR1 = mR2 = mR3 =
mR4 . From this it is derived that both the balance condition of case 1, Eq. (7),
and of case 2, Eq. (10), need to hold at the same time. It has been numerically
verified that these conditions result in realistic, natural, and practical designs.

4 Reconfigurable Parallelogram Linkage

It is interesting to discover the specialities of the linkage when the floating four-
bar linkage is constructed as a planar parallelogram with l1 = l3 and l2 = l4
as shown in Fig. 5. Instead of the ability of all the joints being of any type -
spherical, universal, or revolute - as in Fig. 1, here the joints in B0, B1, B2, and
B3 must have revolute pairs to obtain a planar parallelogram B0B1B2B3. The
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Fig. 5. Force-balanced reconfigurable linkage with CoM in S for any pose, based on a
floating parallelogram connected to the base with supporting links A0A1 and A2A3.
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other joints A0, A1, A2, and A3 can still be of any type such that the planar
parallelogram can be moved spatially.

Since the parallelogram is known for its properties of similarity [1], caused by
opposite links moving synchronously and referred to as a pantograph, it can be
modeled mass equivalently not solely in a single mass equivalent point in each
link as for the general four-bar linkage, but in infinitely many points along each
link. These points R′i are located at distances r′i from the indicated link joint
and can be described with distances ti from the initial mass equivalent points
Ri as illustrated. With r1 and r3 calculated as in Eq. 1, the locations of R′1 and
R′3 can be described with:

r′1 = r1 − t1 =
m1e1 +ma

2l1
m1 +ma

2 +mb
4

− t1 (11)

r′3 = r3 − t3 =
m3e3 +ma

4l3
m3 +ma

4 +mb
2

− t1
m1 +ma

2 +mb
4

m3 +ma
4 +mb

2

in which the relation between t1 and t3 is determined with mR1t1 = mR3t3 such
that the line through R′1 and R′3 intersects with the CoM of the parallelogram.
With r2 and r4 calculated as in Eq. 3, the positions of R′2 and R′4 can be found
similarly with:

r′2 = r2 − t2 =
m2e2 +ma

3l2
m2 +ma

3 +mb
1

− t2 (12)

r′4 = r4 − t4 =
m4e4 +ma

1l4
m4 +ma

1 +mb
3

− t2
m2 +ma

3 +mb
1

m4 +ma
1 +mb

3

in which the relation between t2 and t4 is determined with mR2t2 = mR4t4.
Instead of defining the mass equivalent points, these equations can be said to
define the mass equivalent lines of the parallelogram linkage.

By mounting joints A1 and A2 to R′1 and R′3, respectively, and having these
points slide along the links following conditions (11), the reconfigurable force
balanced linkage in Fig. 6 is obtained. In fact there can be real slider elements
in R′1 and R′3 of which the mass can be included in mR1 and mR3 for balance.
The linkage is force balanced not only for any pose and motion of the linkage
with R′1 and R′3 fixed in their link, but also for any pose and motion of R′1 and
R′3 along their link, gaining an additional DoF.

While in Fig. 6 the two slider elements are not mechanically constrained to
move synchronously according the conditions of Eq. (11), in Fig. 7 a solution
for this is presented with two additional links which intersect in the CoM of
the parallelogram where they have a common revolute pair. One link is parallel
to links B0B1 and B2B3 and has joints with links B1B2 and B3B0 while the
other link is connected with sliders to the revolute joints in R′1 and R′3 and
hence maintains the condition between the two points. Also the mass of these
additional elements can be included for force balance of the complete linkage.

It is interesting to note that for r′1 + r′3 = l1, leading to t1 =
(r1+r3−l1)mR3

mR1
+mR3

, in

Eqs. (11) the line through R′1 and R′3 is parallel to links B1B2 and B3B0.
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Also for the floating parallelogram the four different ways for reconfiguration
as shown in Fig. 4 are possible, following the same conditions as presented for
each case in the previous section. Altogether this leads to a wide variety of
possible reconfigurable designs for which force balance is maintained. In the
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solution of Fig. 7 the link through R′1 and R′3 could also be considered as a
kind of coupler link of the four-bar linkage A0A1A2A3 mounted with sliders in
A1 and A2. Hence the linkage in Fig. 7 could be regarded a way to balance
such four-bar linkage with a sliding coupler link. Finding other and even better
means to synchronize the motions of the two sliders in R′1 and R′3 may be an
interesting target for further studies, e.g. investigating solutions with cables and
pulleys along the four-bar links.

5 Conclusions

In this paper the mass equivalent models of a general four-bar linkage were pre-
sented. It was shown that there is a mass equivalent point in each of the four
links and that these points can be applied for the design of force-balanced link-
ages that can be reconfigured into four different compositions without affecting
the balance. It was also shown that when the general four-bar linkage is reduced
to a planar parallelogram, the mass equivalent points become mass equivalent
lines, allowing smooth reconfiguration to a wide variety of configurations without
affecting the force balance.
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